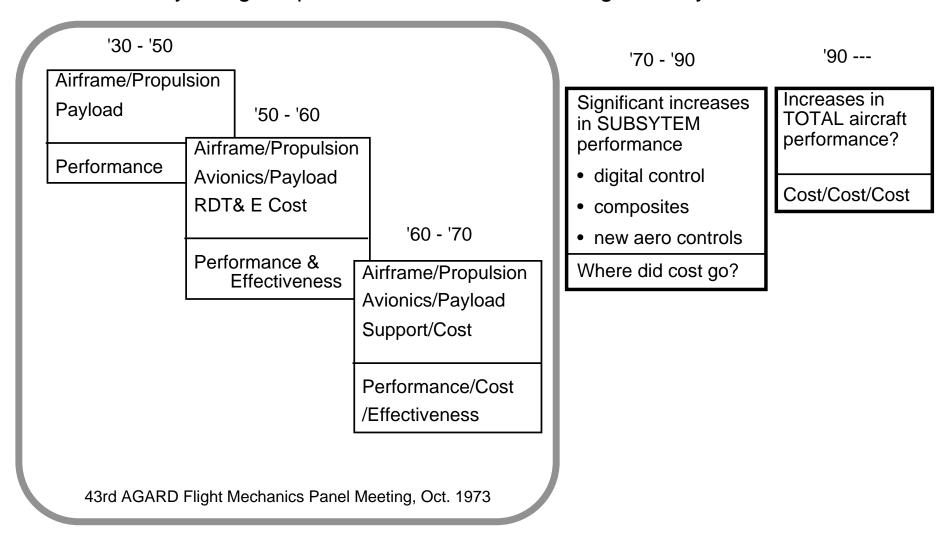
# Control System Requirements for Multidisciplinary Design Applications

Final Project Review NAG-1-1573 August 1997

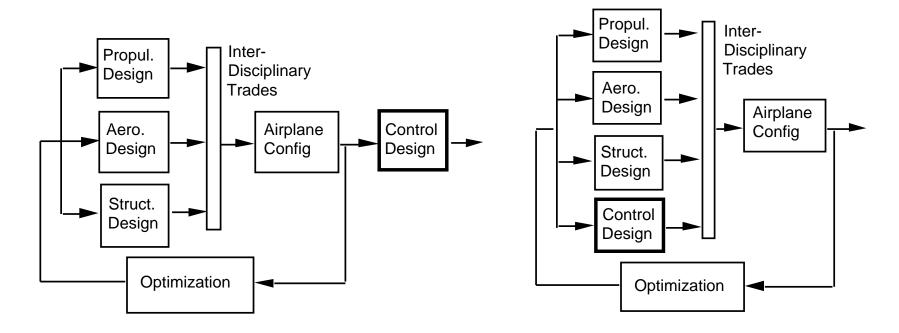
Mark R. Anderson and William Mason

Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University




## **Topics**

- Project Motivation and Objectives
- Aerodynamic Estimation
- Control System Risk Assessment
- Design Studies
- Significant Contributions
- Technology Transfer Efforts


## **Project Motivation**

Preliminary design sophistication has increased significantly since the 1930's.



## **CCV Design Process**

The Control-Configured-Vehicle (CCV) design process includes active control system design in parallel with the other traditional disciplines.



Traditional Aircraft Design Process

Control-Configured-Vehicle Design Process

## **Project Objectives**

1. Develop methods to assess control requirements for selected aircraft configurations without actually designing a control system.

2. Develop methods to rapidly determine aerodynamic parameters for controls assessment of high speed aircraft configurations.

3. Prepare these new methods for integration into a multidisciplinary design optimization environment.

# Required Modeling Accuracy (XB-70)



The limits shown are the maximum variation allowed without causing a drop in the flying qualities level specified in five paragraphs of MIL-F-8785C.

|                  | Mach 0.31 Sea Level |      | Mach 2.2 | 40,000 ft | ft |
|------------------|---------------------|------|----------|-----------|----|
|                  | min                 | max  | min      | max       |    |
| $C_L$            | -14%                | 971% | -23%     | -         |    |
| $C_{m}$          | -30%                | 408% | -73%     | 33%       |    |
| $C_{mq}$         | -58%                | 895% | -28%     | -         |    |
| $C_{y}$          | -                   | -    | -161%    | -         |    |
| $C_{I}$          | -689%               | 781% | -87%     | -         |    |
| $C_{lp}$         | -                   | 606% | -331%    | 111%      |    |
| $\mathbf{C}_{n}$ | -566%               | 865% | -104%    | 459%      |    |
| $C_{nr}$         | -361%               | 481% | -143%    | -         |    |
|                  | I                   |      | 1        |           |    |

# **Aerodynamic Estimation Accuracy**



## **Stability Derivatives**

| Derivative | CL | Cm | Cmq | Сү | Cn | Cl | Clp | Cnr |
|------------|----|----|-----|----|----|----|-----|-----|
| Subsonic   |    |    |     | 0  | •  | •  | 0   |     |
| Supersonic | 0  | •  |     | 0  | 0  |    |     | •   |

## **Control Derivatives**

| Derivative | C <sub>L f</sub> | C <sub>m f</sub> | C <sub>n f</sub> | C <sub>l f</sub> | C <sub>L c</sub> | C <sub>m c</sub> | C <sub>Y r</sub> | C <sub>n r</sub> | C <sub>l r</sub> |
|------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Subsonic   | 0                |                  | •                | •                |                  |                  | •                |                  |                  |
| Supersonic |                  |                  | •                |                  | O                | 0                | 0                | 0                |                  |

Very Good

Good

Fair

Poor

Not Useful 100% < Error

Error < 10%

10% < Error < 25% 25% < Error < 50% 50% < Error < 100%







# **Improving Estimation Accuracy**

Using Mathematica extends allowable configurations beyond DATCOM.

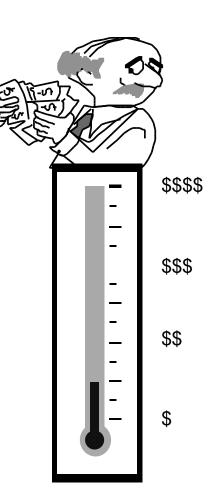




## **Estimation Software for Optimization**

AEM (Aerodynamic Estimation Module) controls the process started by Valery Razgonyaev, completed by Yannick Feder

- Uses APAS for initial aero database
- Essentially uses APAS to provide fits to theoretical relations
  - in effect a response surface
- MATLAB environment used to execute optimization process
- Supporting Visualization package also developed
- Documented in VPI-AOE-240, Dec. 1996




## "Controls" Optimization Function

To be compatible with existing optimization schemes, a controls cost function must be also be developed.

The controls cost function must be able to:

- penalize a configuration which cannot be controlled or requires a complicated control system
- reward a configuration which can be controlled easily/ cheaply
- yield some kind of continuous scale between reward and penalty



# **Control Design Risk Concept**

Beaufrere introduced the concept of "control design risk" in the 1987.



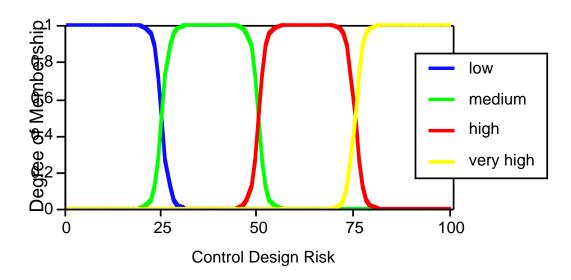
High Risk: Cannot satisfy design specifications with new technology

Med. Risk: Can satisfy design specifications with novel design approaches

Low Risk: Can satisfy design specifications without novel design approaches

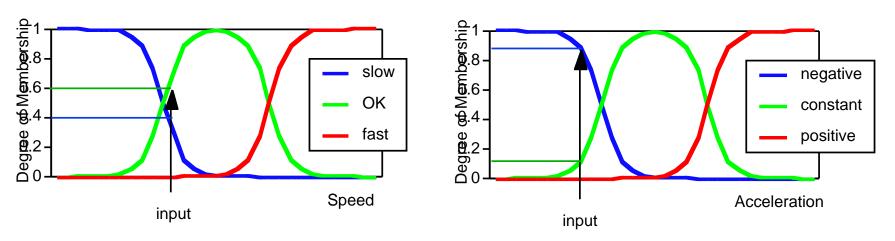
### What should control risk measure?

Unlike many other disciplines involved in the aircraft design process, the flight controls discipline does not have an obvious figure-of-merit.


- Development or life-cycle cost?
- Component weight?
- Reliability or safety?
- Handling or ride qualities?
- Enhanced performance or agility?
- Stability margin?
- Model-following or tracking error?

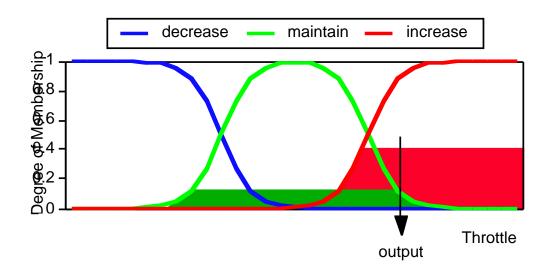
Our approach has been to use the <u>complexity</u> of the required control system as a figure-of-merit for dynamic requirements.

# **Control System Design Risk**


Control system complexity is categorized by the number of feedback loops and dynamic elements that are required.

| Complexity | Control System Type                             |
|------------|-------------------------------------------------|
| Low        | Bare airframe                                   |
| Medium     | Single-loop Stability Augmentation System (SAS) |
| High       | Multiple-loop SAS                               |
| Very High  | Proportional+Integral control                   |




A control system design "risk" value is assigned by the fuzzy logic algorithm.

## **How Fuzzy Logic Works**



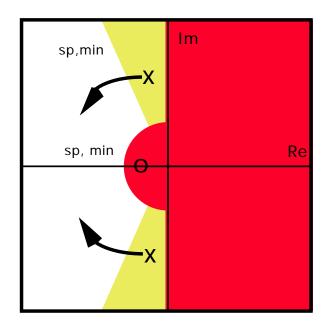
Rule 1: IF speed is "slow" (0.4) AND acceleration is "negative" (0.9) THEN "increase" (0.4) throttle.

Rule 2: IF speed is "OK" (0.6) AND acceleration is "constant" (0.1) THEN "maintain" (0.1) throttle.



# **Translating Requirements into Rules**

## Rule #3: Pitch Damper



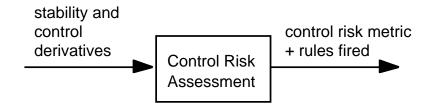

IF the short-period poles are "complex and stable"

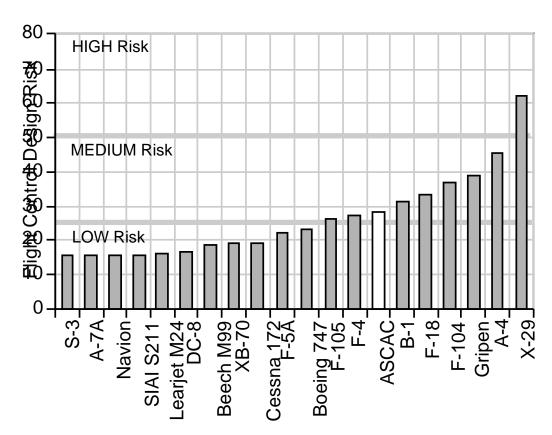
AND  $\omega_{\text{ sp}}\,\tau_{\theta 2}^{}\,$  is "within specification"

AND  $\zeta_{\textit{sp}}$  is "below specification"

THEN the control risk is "medium"

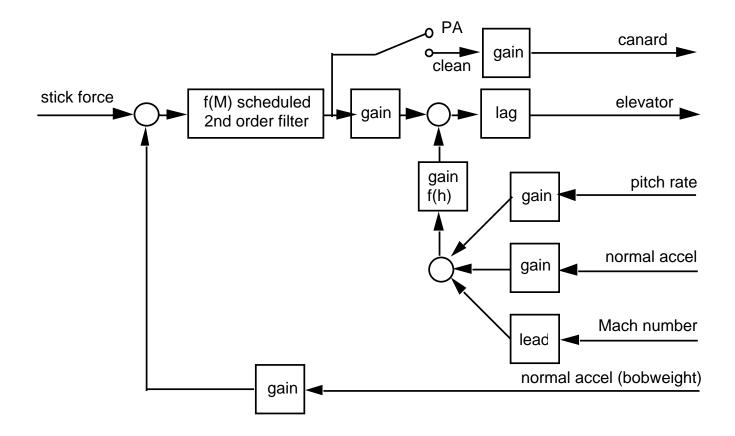



#### Rule #18: Take-off Rotation


IF pitch acceleration at take-off is "below specification"

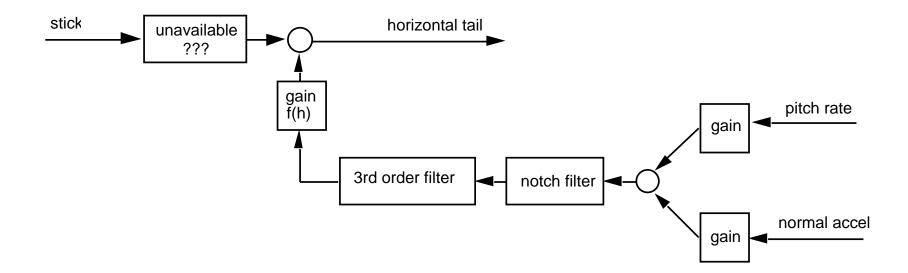
THEN the control risk is "very high"

## **Control Risk Comparison**

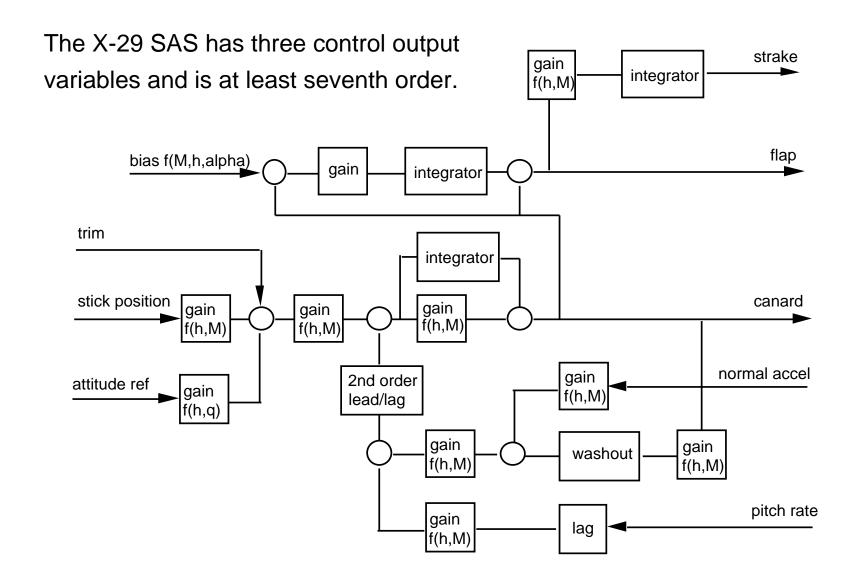

Existing aircraft control systems were studied to "calibrate" our risk metric.






## **XB-70 Aircraft SAS**

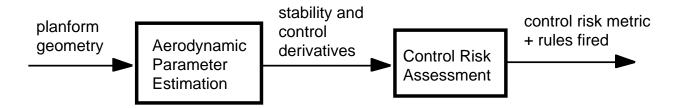
The XB-70 stability augmentation system (SAS) includes four measurement variables, two control output variables, and is third order.




## **B-1 Aircraft SAS**

Not counting its Structural Mode Control System (SMCS), the B-1 SAS includes two feedback measurements and is approximately fifth order.




## X-29 Aircraft SAS



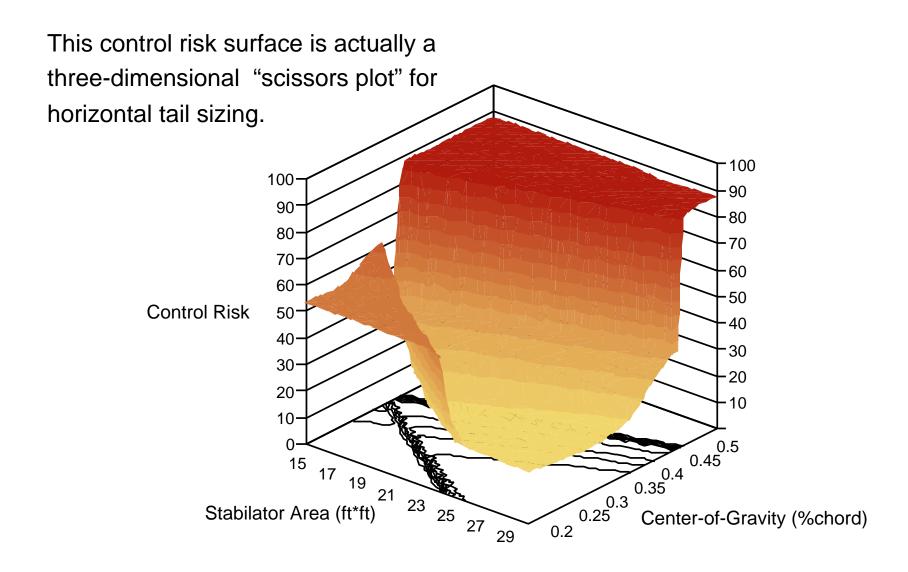
## **Control Risk Sensitivity**



By combining aerodynamic estimation and control risk assessment, an overall sensitivity can be obtained.



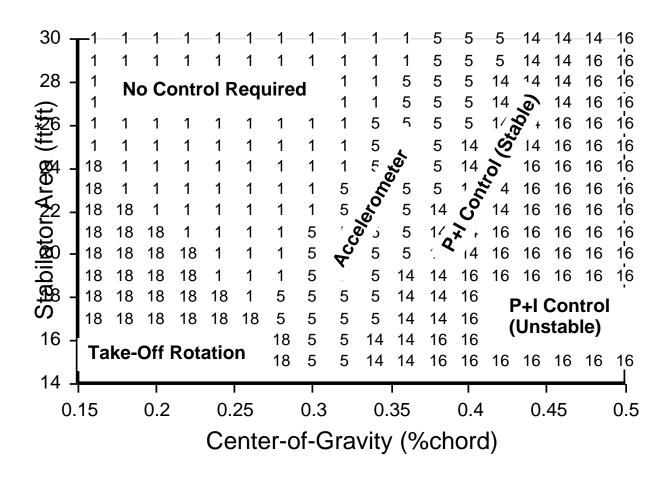
Sensitivity = 100 (p/R) (R/p)


R = control risk

p = geometry parameter

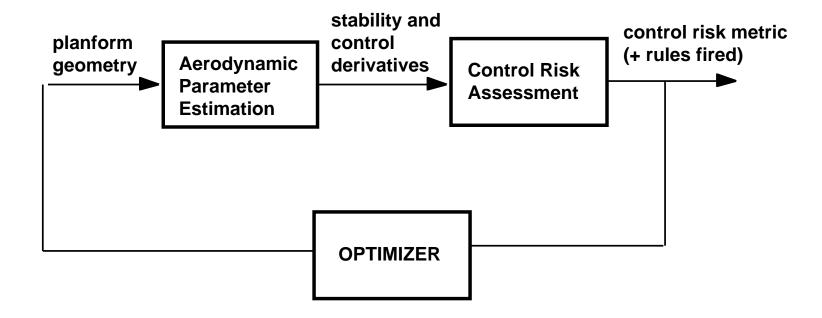
|                                 | Nominal | Reduced Tail |
|---------------------------------|---------|--------------|
| Weight                          | 17.1    | -74.6        |
| Moment of Inertia               | 21.3    | 73.0         |
| Chord                           | -78.6   | -192.6       |
| Distance from ref to Stabilator | -86.9   | -143.8       |
| Distance from ref to Wing       | 48.1    | -30.0        |
| Distance from ref to C.G.       | -30.2   | 38.2         |
| Wing Area                       | -14.0   | 72.1         |
| Lift Curve Slope of Wing        | -3.9    | 63.3         |
| Stabilator Area                 | -24.2   | -70.6        |
| Downwash Coefficient            | -26.5   | 11.3         |

# **A Control Risk Response Surface**






## **Rule Strengths**




The highest rule strength determines the control system structure or constraint that is most influential.



## **MDO Application**

A multidisciplinary design optimization (MDO) problem is formed when information regarding control risk is used to modify the aircraft geometry.



# McDonnell Douglas ASCAC



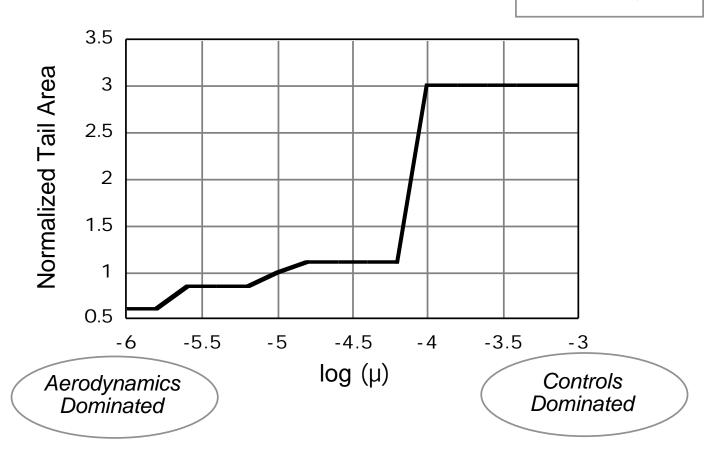
A combination of APAS and DATCOM extensions are used to model this high speed transport configuration.

| Aircraft Weight     | 750,000 lbs            |
|---------------------|------------------------|
| Wing Reference Area | 10,000 ft <sup>2</sup> |
| Wing Span           | 135 ft                 |
| Wing Chord          | 65 ft                  |

| Refence Center-of-Gravity Position | 184 ft              |
|------------------------------------|---------------------|
| Horizontal Tail Reference Area     | 781 ft <sup>2</sup> |

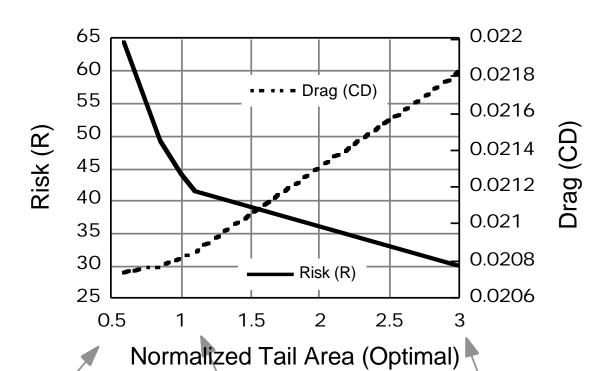
Moment of Inertia ( $I_{xx}$ ) 1.8x10<sup>7</sup> slug ft<sup>2</sup>
Moment of Inertia ( $I_{yy}$ ) 6.3x10<sup>7</sup> slug ft<sup>2</sup>
Moment of Inertia ( $I_{zz}$ ) 8.0x10<sup>7</sup> slug ft<sup>2</sup>

Design Problem Variables


## **Optimization Problem Formulation**



An optimization problem is formed using a weighted sum of


control risk (R) and trimmed drag coefficient (C<sub>D</sub>).

$$J = C_D + \mu R$$



# **Horizontal Tail Size Optimization**





HIGH Control Risk LOW Drag

MEDIUM Control Risk LOW Drag

LOW Control Risk HIGH Drag

## **Significant Contributions**

- New analytical expressions to model wing/body interference
- Aerodynamic estimation software to link APAS and MATLAB
- Accuracy comparisons between DATCOM, APAS, and vortex lattice
- New method for control design risk assessment using fuzzy logic
- Sensitivity calculations of control risk to variations in aircraft geometry
- Design studies of the XB-70, ASCAS, and a general aviation aircraft

## **Technology Transfer Efforts**

## A significant effort was made to reach industry and other groups.

- 4 conference papers (1 submitted to the Journal of Aircraft)
- 3 technical reports (2 NASA Contractor Reports in preparation)
- over 20 presentations, meetings or contacts
  - NASA LaRC
  - Joint Strike Fighter Program Office
  - Wright Laboratory
  - Multidisciplinary Analysis and Design Advisory Board
  - Naval Strike Aviation Team
  - SAE Control and Guidance Systems Committee
  - Boeing Commerical Aircraft
  - · Beech/Raytheon
  - North American Rockwell

#### What did we learn?

- Difficulty with the concept of control risk
- Difficulty with the fact that no control system design is produced
- Unwillingness to share proprietary data
- Modeling programs used in optimization are not ready for large-scale configuration variations